Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Sci Rep ; 14(1): 3469, 2024 02 12.
Article En | MEDLINE | ID: mdl-38342928

The aim of this study was to investigate the potential of Ipomoea carnea flower methanolic extract (ICME) as a natural gastroprotective therapy against ethanol-induced gastric ulcers, particularly in individuals exposed to ionizing radiation (IR). The study focused on the Nrf2/HO-1 signaling pathway, which plays a crucial role in protecting the gastrointestinal mucosa from oxidative stress and inflammation. Male Wistar rats were divided into nine groups, the control group received distilled water orally for one week, while other groups were treated with ethanol to induce stomach ulcers, IR exposure, omeprazole, and different doses of ICME in combination with ethanol and/or IR. The study conducted comprehensive analyses, including LC-HRESI-MS/MS, to characterize the phenolic contents of ICME. Additionally, the Nrf2/HO-1 pathway, oxidative stress parameters, gastric pH, and histopathological changes were examined. The results showed that rats treated with IR and/or ethanol exhibited histopathological alterations, increased lipid peroxidation, decreased antioxidant enzyme activity, and reduced expression levels of Nrf2 and HO-1. However, pretreatment with ICME significantly improved these parameters. Phytochemical analysis identified 39 compounds in ICME, with flavonoids, hydroxybenzoic acids, and fatty acids as the predominant compounds. Virtual screening and molecular dynamics simulations suggested that ICME may protect against gastric ulceration by inhibiting oxidative stress and inflammatory mediators. In conclusion, this study demonstrates the potential of ICME as a natural gastroprotective therapy for preventing gastric ulcers. These findings contribute to the development of novel interventions for gastrointestinal disorders using natural plant extracts particularly in individuals with a history of radiation exposure.


Plant Extracts , Stomach Ulcer , Animals , Rats , Antioxidants/pharmacology , Ethanol/chemistry , Gastric Mucosa/metabolism , Methanol/chemistry , NF-E2-Related Factor 2/metabolism , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Rats, Wistar , Stomach Ulcer/drug therapy , Stomach Ulcer/etiology , Stomach Ulcer/prevention & control , Tandem Mass Spectrometry , Ulcer/pathology
2.
Heliyon ; 10(3): e25232, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38352786

Introduction: Citrus sinensis L. is a candidate plant with promising antimicrobial potential. In the current study, the phytochemical investigation of C. sinensis leaf extract led to the isolation of three coumarins, namely bergapten, xanthotoxin, and citropten. Methods: The chemical structures of the isolated coumarins were elucidated using NMR and ESI-MS techniques. The total aqueous ethanol leaf extract and the isolated coumarins were evaluated for their antimicrobial effects against Helicobacter pylori using the MTT-micro-well dilution method and its anti-biofilm activity using MBEC assay, as compared to clarithromycin. Results: The results showed that citropten scored the lowest MIC value at 3.9 µg/mL and completely inhibited the planktonic growth of H. pylori. In addition, it completely suppressed H. pylori biofilm at 31.25 µg/mL. These findings have been supported by molecular docking studies on the active sites of the H. pylori inosine 5'-monophosphate dehydrogenase (HpIMPDH) model and the urease enzyme, showing a strong binding affinity of citropten to HpIMPDH with seven hydrogen bonds and a binding energy of -6.9 kcal/mol. Xanthotoxin and bergapten showed good docking scores, both at -6.5 kcal/mol for HpIMPDH, with each having four hydrogen bondings. Furthermore, xanthotoxin showed many hydrophobic interactions, while bergapten formed one Pi-anion interaction. Concerning docking in the urease enzyme, the compounds showed mild to moderate binding affinities as compared to the ligand. Thus, based on docking results and good binding scores observed with the HpIMPDH active site, an in-vitro HpIMPDH inhibition assay was done for the compounds. Citropten showed the most promising inhibitory activity with an IC50 value of 2.4 µM. Conclusion: The present study demonstrates that C. sinensis L. leaves are a good source for supplying coumarins that can act as naturally effective anti-H. pylori agents.

3.
BMC Biotechnol ; 24(1): 3, 2024 01 17.
Article En | MEDLINE | ID: mdl-38233817

The growing spread of infectious diseases has become a potential global health threat to human beings. According to WHO reports, in this study, we investigated the impact of co-cultivating the isolated endophytic fungus Aspergillus sp. CO2 and Bacillus sp. COBZ21 as a method to stimulate the production of natural bioactive substances. (GC/MS)-based metabolomics profiling of two sponge-associated microbes, Aspergillus sp. CO2 and Bacillus sp. COBZ21, revealed that the co-culture of these two isolates induced the accumulation of metabolites that were not traced in their axenic cultures. By detection of different activities of extracts of Bacillus sp. COBZ21 and Aspergillus sp. CO2 and coculture between Bacillus sp. COBZ21 and Aspergillus sp. CO2. It was noted that the coculture strategy was the reason for a notable increase in some different activities, such as the antimicrobial activity, which showed potent activity against Escherichia coli ATCC 25,922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC 10,231. The antibiofilm activity showed significant biofilm inhibitory activity toward Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 10,145, and Staph aureus NRRLB-767, with activity up to 53.66, 71.17, and 47.89%, while it showed low activity against E. coli ATCC 25,922, while the antioxidant activity based on the DPPH assay showed maximum activity (75.25%). GC-MS investigations revealed the presence of variable chemical constituents belonging to different chemical categories, which reflected their chemical diversity. The main components are (+-) cis-Deethylburnamine (2.66%), Bis(3,6,9,12-tetraoxapentaethylene) crowno-N,N,N',N'-tetra methylpphanediamine (2.48%), and 11-phenyl-2,4,6,8-tetra(2-thienyl)-11-aza-5,13-dithiaeteracyclo[7.3.0.1(2,8)0.0(3,7)] trideca-3,6-diene-10,12,13-trione (3.13%), respectively, for Bacillus sp. axenic culture, Aspergillus sp. CO2, Aspergillus sp. CO2, and Bacillus sp. COBZ21 coculture. By studying the ADME-related physicochemical properties of coculture extract, the compound showed log Po/w values above 5 (8.82). The solubility of the substance was moderate. In order to provide a comprehensive definition of medicinal chemistry and leadlikness, it is important to note that the latter did not meet the criteria outlined in the rule of three (RO3). The toxicity prediction of the coculture extract was performed using the ProTox II web server, which showed that the selected compound has no pronounced toxicity.


Anti-Infective Agents , Bacillus , Humans , Bacillus/metabolism , Antioxidants/pharmacology , Carbon Dioxide/metabolism , Escherichia coli/metabolism , Microbial Sensitivity Tests , Anti-Infective Agents/chemistry , Aspergillus/metabolism , Staphylococcus aureus , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology
4.
Biomolecules ; 13(11)2023 10 24.
Article En | MEDLINE | ID: mdl-38002255

In the present study, norlobaridone (NBD) was isolated from Parmotrema and then evaluated as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm development. This phenolic natural product was found to reduce P. aeruginosa biofilm formation (64.6% inhibition) and its related virulence factors, such as pyocyanin and rhamnolipids (% inhibition = 61.1% and 55%, respectively). In vitro assays inhibitory effects against a number of known LuxR-type receptors revealed that NBD was able to specifically block P. aeruginosa's LasR in a dose-dependent manner. Further molecular studies (e.g., sedimentation velocity and thermal shift assays) demonstrated that NBD destabilized LasR upon binding and damaged its functional quaternary structure (i.e., the functional dimeric form). The use of modelling and molecular dynamics (MD) simulations also allowed us to further understand its interaction with LasR, and how this can disrupt its dimeric form. Finally, our findings show that NBD is a powerful and specific LasR antagonist that should be widely employed as a chemical probe in QS of P. aeruginosa, providing new insights into LasR antagonism processes. The new discoveries shed light on the mysterious world of LuxR-type QS in this key opportunistic pathogen.


Quorum Sensing , Virulence Factors , Virulence Factors/metabolism , Pseudomonas aeruginosa , Dimerization , Biofilms , Transcription Factors/metabolism , Trans-Activators/metabolism , Bacterial Proteins/metabolism , Anti-Bacterial Agents/chemistry
5.
BMC Complement Med Ther ; 23(1): 242, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37461016

Albendazole is the most common benzimidazole derivative used for trichinellosis treatment but has many drawbacks. The quest for alternative compounds is, therefore, a target for researchers. This work aims to assess the in vitro anthelmintic effect of nifedipine, a calcium channel blocker, and a methanol extract of the flowers of Chrysanthemum coronarium as therapeutic repurposed drugs for treating different developmental stages of Trichinella spiralis in comparison with the reference drug, albendazole. Adult worms and muscle larvae of Trichinella spiralis were incubated with different concentrations of the studied drugs. Drug effects were evaluated by parasitological and electron microscopic examination.As a result, the effects of these drugs on muscle larvae were time and dose-dependent. Moreover, the LC50 after 48 h incubation was 81.25 µg/ml for albendazole, 1.24 µg/ml for nifedipine, and 229.48 µg/ml for C. coronarium. Also, the effects of the tested drugs were prominent on adult worms as the LC50 was 89.77 µg/ml for albendazole, 1.87 µg/ml for nifedipine, and 124.66 µg/ml for C. coronarium. SEM examination of the tegument of T. spiralis adult worms and larvae showed destruction of the adult worms' tegument in all treated groups. The tegument morphological changes were in the form of marked swellings or whole body collapse with the disappearance of internal contents. Furthermore, in silico studies showed that nifedipine might act as a T. spiralis ß-tubulin polymerization inhibitor.Our results suggest that nifedipine and C. coronarium extract may be useful therapeutic agents for treating trichinellosis and warrant further assessment in animal disease models.


Anthelmintics , Chrysanthemum , Trichinella spiralis , Trichinellosis , Animals , Trichinellosis/drug therapy , Albendazole/pharmacology , Albendazole/therapeutic use , Nifedipine/pharmacology , Nifedipine/therapeutic use , Drug Repositioning , Anthelmintics/pharmacology , Anthelmintics/therapeutic use
6.
BMC Complement Med Ther ; 23(1): 161, 2023 May 18.
Article En | MEDLINE | ID: mdl-37202749

BACKGROUND: Trichinellosis is a public health threat infected both animals and humans as a result of eating undercooked meat. It caused by Trichinella spiralis that has widespread drug resistance and even developed many sophisticated strategies for their survival, this increases the demand in searching for new anthelmintic drugs from natural source. METHODS: Our objectives were to test the in vitro and in vivo anthelmintic activity of Bassia indica BuOH frac., and to characterize its chemical composition using UPLC-ESI-MS/MS. Besides an in silico molecular docking study with the prediction of the PreADMET properties. RESULTS: In vitro investigation of B. indica BuOH frac., showed severe destruction of the adult worm and larvae, marked cuticle swelling, areas with vesicles, blebs and loss of annulations. This was assured via in vivo study, which revealed a significant reduction (P < 0.05) in the mean adult worm count with efficacy of 47.8% along with a significant decrease (P < 0.001) in the mean larval count per gram muscle with efficacy 80.7%. Histopathological examinations of the small intestine and muscular sections showed marked improvement. In addition, immunohistochemical findings demonstrated that B. indica BuOH frac. depressed the proinflammatory cytokines expressions of TNF-α, which was obviously upregulated by T. spiralis. Precise chemical investigation of the BuOH frac. using UPLC-ESI-MS/MS resulted in the identification of 13 oleanolic type triterpenoid saponins; oleanolic acid 3-O-6´-O-methyl-ß-D-glucurono-pyranoside (1), chikusetsusaponin-IVa (2) and its methyl ester (3), chikusetsusaponin IV (4) and its methyl ester (5), momordin-Ic (6) and its methyl ester (7), betavulgaroside-I (8), -II (9) -IV (10), -X (11), licorice-saponin-C2 (12) and -J2 (13). In addition, 6 more phenolics were identified as syringaresinol (14), 3,4-di-O-caffeoylquinic acid (15), 3-O-caffeoyl-4-O-dihydrocaffeoylquinic acid (16), 3,4-di-O-caffeoylquinic acid butyl ester (17), 3,5-di-O-galloyl-4-O-digalloylquinic acid (18) and quercetin 3-O-(6´´-feruloyl)-sophoroside (19). The auspicious anthelmintic activity was further ascertained using in silico molecular docking approach that targeted certain protein receptors (ß-tubulin monomer, tumor necrosis factor alpha (TNF-α), cysteine protease (Ts-CF1), calreticulin protein (Ts-CRT)), all the docked compounds (1-19) fit into the binding site of the active pocket with binding affinities noteworthy than albendazole. In addition, ADMET properties, drug score and drug likeness were predicted for all compounds.


Anthelmintics , Trichinella spiralis , Humans , Mice , Animals , Antiparasitic Agents , Tandem Mass Spectrometry , Molecular Docking Simulation , Tumor Necrosis Factor-alpha , Anthelmintics/pharmacology , Plant Extracts/pharmacology , Plant Components, Aerial
7.
Pharmaceutics ; 15(2)2023 Jan 26.
Article En | MEDLINE | ID: mdl-36839737

Herniaria hemistemon J.Gay is widely used in folk medicine to treat hernia. The present study aimed to annotate the phytoconstituents of H. hemistemon aerial-part extract and investigate its in vivo anticryptosporidial activity. The chemical characterization was achieved via the LC-ESI-MS/MS technique resulting in the annotation of 37 phytocompounds comprising flavonoids and phenolic acids. Regarding the anticryptosporidial activity, fifty dexamethasone-immunosuppressed mice were separated into five groups: GI, un-infected (normal control); GII, infected but not treated (model); GIII, infected and received NTZ, the reference drug; GIV, infected and received H. hemistemon extract (100 mg/kg); and GV, infected and received H. hemistemon extract (200 mg/kg). When GIII, GIV, and GV were compared to GII, parasitological analyses displayed highly significant differences in the mean numbers of Cryptosporidium parvum oocysts in the stool between the different groups. GV demonstrated the highest efficacy of 79%. Histopathological analyses displayed improvement in the small intestine and liver pathology in the treated groups (GIII, IV, and V) related to the model (GII), with GV showing the highest efficacy. Moreover, the docking-based study tentatively highlighted the potential of benzoic acid derivatives as lactate dehydrogenase inhibitors. The docked compounds showed the same binding interactions as oxamic acid, where they established H-bond interactions with ARG-109, ASN-140, ASP-168, ARG-171, and HIS-195. To sum up, H. hemistemon is a promising natural therapeutic agent for cryptosporidiosis.

8.
Molecules ; 27(23)2022 Dec 03.
Article En | MEDLINE | ID: mdl-36500595

Hepatocellular carcinoma (HCC) is a poor-prognosis type of cancer with high resistance to chemotherapy, making the search for safe drugs a mandatory issue. Plant-derived products have potential to reduce negative side effects of cancer treatments. In this work, ability of a defatted methanolic extract of Alocasia gigantea leaves to fight HCC was evaluated in an animal model. Overall, treatment of HCC-induced mice with the methanolic extract at 150 mg/kg body weight for four consecutive weeks caused induction of autophagy through silencing of the relative expression of autophagy suppressor (mTOR) and inducement of autophagy markers (AMPK, Beclin-1, and LC-3). Moreover, it improved preservation of the hepatic histological architecture of the animals, with minor hepatocytic changes but scattered foci of hepatocytic apoptosis. Chemical profiling of the methanolic extract via ultra-high-performance liquid chromatography coupled to a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI-MS/MS) allowed identification of di-C-glycosyl flavones, mostly represented by 6-C-hexosyl-8-C-pentosyl apigenin isomers, which may possibly be associated with inducement of the autophagy pathway in HCC. Overall, these outcomes gave an initial visualization of the operative effect of some compounds in A. gigantea leaves that are potential treatment for HCC.


Alocasia , Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Tandem Mass Spectrometry , Carcinoma, Hepatocellular/drug therapy , Spectrometry, Mass, Electrospray Ionization/methods , Liver Neoplasms/drug therapy , Chromatography, High Pressure Liquid/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Methanol/chemistry , Autophagy
9.
Pharm Biol ; 60(1): 1899-1914, 2022 Dec.
Article En | MEDLINE | ID: mdl-36200747

CONTEXT: Thais savignyi Deshayes (Muricidae) is widely distributed in the Red Sea. Its abundance and the history of Muricidae in traditional medicine make it a tempting target for investigation. OBJECTIVE: To investigate the chemical profile and biological activities of T. savignyi tissue extracts. MATERIALS AND METHODS: Methanol, ethanol, acetone, and ethyl acetate extracts from T. savignyi tissue were compared in their antioxidant by total antioxidant capacity, DPPH free radical scavenging, and total phenolic content. In addition, the antimicrobial, and antibiofilm properties (at 250 µg/mL) of the extracts were tested against Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans. The antioxidant extract with greatest activity was assessed for cytotoxicity (range 0.4-100 µg/mL) against 3 human cancer cell lines (UO-31, A549 and A431), and its chemical composition was investigated using GC-MS. Moreover, docking simulation was performed to predict its constituents' binding modes/scores to the active sites of thymidylate kinase. RESULTS: The ethyl acetate extract (Ts-EtOAc) showed the highest total antioxidant capacity (551.33 mg AAE/g dry weight), total phenolics (254.46 mg GAE/g dry weight), and DPPH scavenging (IC50= 24.0 µg/mL). Ts-EtOAc exhibited strong antibacterial (MIC: 3.9 µg/mL against K. pneumoniae), antibiofilm (MIC: 7.81 µg/mL against S. aureus), and antifungal (MIC: 3.9 µg/mL against C. albicans) activities and considerable cytotoxicity against cancer cells (UO-31: IC50= 19.96 ± 0.93, A549: IC50= 25.04 ± 1.15 µg/mL). GC-MS identified multiple bioactive metabolites in Ts-EtOAc extract belonging to miscellaneous chemical classes. Molecular docking studies revealed that the constituents of Ts-EtOAc have antibacterial potential. DISCUSSION AND CONCLUSIONS: T. savignyi extract has considerable antimicrobial and cytotoxic activities. Further studies are needed to isolate the active constituents of this snail for comprehensive drug discovery tests.


Anti-Infective Agents , Antioxidants , Acetates , Acetone , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Ethanol , Free Radicals , Humans , Methanol , Microbial Sensitivity Tests , Molecular Docking Simulation , Phenols/pharmacology , Plant Extracts , Staphylococcus aureus , Thailand , Tissue Extracts
10.
Food Funct ; 13(22): 11733-11743, 2022 Nov 14.
Article En | MEDLINE | ID: mdl-36281695

Physalis peruviana L. is a common edible fruit in Egypt and other regional countries. In the present study, we investigated its crude extract as a potential source of antiproliferative secondary metabolites. Upon bioactivity guided solvent fractionation, ethyl acetate extract showed preferential activity toward the human pancreatic cancer cell line PANC-1 with an IC50 value of 5.23 ± 0.2 µg mL-1. The subsequent HR-LCMS-guided and biological activity-guided isolation revealed magnolin as a potent preferential antiproliferative agent against PANC-1 with an IC50 of 0.51 ± 0.46 µM that was comparable to that of the positive control doxorubocin (IC50 of 0.17 ± 0.15 µM). Moreover, magnolin showed much less cytotoxicity in comparison with the positive control doxorubicin (6.96% and 30.48% growth inhibition, respectively, at 5 µg mL-1) towards normal human cells (i.e. dermal fibroblasts; HDFa). Furthermore, magnolin was able to induce a concentration-dependent suppression of the formation of PANC-1 colonies, where the treatment of the tumor cells with 25 nM, 50 nM, and 100 nM concentrations of the compound resulted in a 36%, 57, and 78% reduction, respectively, in the PANC-1 colony formation. Additionally, magnolin was observed to limit PANC-1 tumor cell migration in the tumor cell wound healing assay, indicating a substantial anti-migratory effect against the PANC-1 cell line. A subsequent in silico-based study of this compound structure putatively suggested matrix metalloproteinase-3 (MMP3) as the molecular target that mediates these observed effects on PANC-1 cells. Absolute binding free energy estimation (ΔGbinding) and 100 ns long molecular dynamics simulation (MDS) experiments indicated that the magnolin structure has good affinity towards the MMP3's active site and can achieve significantly stable binding inside it. Accordingly, upon experimental validation, magnolin was found to inhibit the catalytic activity of MMP3 in a dose-dependent manner with a nanomolar IC50 value of 185 nm ± 4.86 and a Ki of 112 nm ± 6.31. In conclusion, our results clearly revealed that magnolin derived from P. peruviana is an interesting antiproliferative and antimetastatic agent against PANC-1 cells with potent inhibitory activity against MMP3. Further in vivo evaluation will be of great interest in the future.


Lignans , Pancreatic Neoplasms , Physalis , Humans , Matrix Metalloproteinase 3 , Lignans/pharmacology , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Pancreatic Neoplasms
11.
Arch Microbiol ; 204(8): 537, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35913539

This study was designed to evaluate the antimicrobial, antioxidant, and cytotoxic potentials of the marine actinomycetes spp. isolated from the Red Sea water, Hurghada, Egypt. Out of 80 actinomycetes isolates, one isolate AW6 was selected based on its antioxidant activity (IC50 about 5.24 µg/mL which scavenged 91% of formed DPPH free radicals) and antimicrobial potential against E. coli, S. aureus, B. subtilis, and P. aeruginosa, A. niger, and C. albicans. The strain was identified based on phenotypic and genotypic analysis, and deposited in the GenBank with accession number OK090864.1. Cultivation of the selected strain on rice, chromatographic purification, and structural elucidation led to the isolation of two compounds C1: umbelliferone, and C2: 1-methoxy-3-methyl-8-hydroxy-anthraquinone. The antimicrobial activity of the obtained compounds showed that C1 and C2 have low antibacterial activity toward S. aureus and E. coli with no pronounced activity toward P. aeruginosa, C. albicans, and A. niger. Additionally, the antioxidant activity of C1 and C2 revealed that C2 has a good antioxidant activity, with DPPH scavenging activity reaching (55.25%), followed by C1 (30.20%). Moreover, both compounds displayed anti-Gyr-B enzyme activity with IC50 value of (3.79 ± 0.21 µM) for C1, and (IC50 = 13 ± 0.71 µM) for C2. The ADME-related physicochemical properties of the obtained compound were predicted using SwissADME web tools and the ProToxii webserver was used to estimate in silico toxicity.


Anti-Infective Agents , Staphylococcus aureus , Actinomyces , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Candida albicans , Escherichia coli/genetics , Escherichia coli/metabolism , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/metabolism
12.
Sci Rep ; 12(1): 6239, 2022 04 14.
Article En | MEDLINE | ID: mdl-35422072

Renal ischemia/reperfusion (RI/R) is a critical clinical outcome with slightly reported improvement in mortality and morbidity. Effective therapies are still crucially required. Accordingly, the therapeutic effects of esculin (ESC, LCESI-MS/MS-isolated compound from Vachellia farnesiana flowers extract, with reported P2X7 receptor inhibitor activity) alone and in combination with erythropoietin (EPO) were investigated against RI/R injury and the possible underlying mechanisms were delineated. ESC and EPO were administered for 7 days and 30 min prior to RI, respectively. Twenty-four hour following reperfusion, blood and kidney samples were collected. Results revealed that pretreatment with either ESC or EPO reduced serum nephrotoxicity indices, renal oxidative stress, inflammatory, and apoptosis markers. They also ameliorated the renal histopathological injury on both endothelial and tubular epithelial levels. Notably, ESC markedly inhibited P2X7 receptors and NLRP3 inflammasome signaling (downregulated NLRP3 and Caspase-1 gene expressions), whereas EPO significantly upregulated PI3K and Akt gene expressions, also p-PI3K and p-Akt levels in renal tissues. ESC, for the first time, demonstrated effective protection against RI/R-injury and its combination with EPO exerted maximal renoprotection when compared to each monotherapy, thereby representing an effective therapeutic approach via inhibiting oxidative stress, inflammation, renal tubular and endothelial injury, apoptosis, and P2X7 receptors expression, and activating PI3K/Akt pathway.


Erythropoietin , Reperfusion Injury , Apoptosis , Erythropoietin/metabolism , Esculin/pharmacology , Humans , Kidney/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Tandem Mass Spectrometry
13.
J Ethnopharmacol ; 292: 115187, 2022 Jun 28.
Article En | MEDLINE | ID: mdl-35288287

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Warburgia (family Canellaceae) is widely distributed over Afrotropical and Neotropical realms. Traditionally, W. salutaris (G. Bertol.) Chiov., and other Warburgia species are used as anti-inflammatory, antimalarial, antimicrobial, and for wound healing, and treating several skin complaints as well. Specifically, different extracts from W. salutaris were reported to possess diuretic, anti-inflammatory, and cytotoxic effects. AIM OF THE STUDY: This work aimed to investigate the phytochemical composition of an aqueous extract from W. salutaris bark, and evaluate its antioxidant and anti-aging activities in silico, in vitro, and in vivo. MATERIALS AND METHODS: HPLC-PDA-MS/MS was used to investigate the phytochemical components of the extract. The antioxidant potential of the extract was evaluated in vitro using DPPH and FRAP assays. The Caenorhabditis elegans nematodes model was adopted to investigate the antioxidant and the anti-aging effects in vivo by determining the worms' survival rate, level of ROS, HSP16 expression, and nuclear translocation of the transcription factor DAF16. Molecular operating environment (MOE) software was utilized for in silico molecular docking of the extract's components into different enzymes involved in the aging process. Anti-collagenase, anti-elastase, anti-tyrosinase, and anti-hyaluronidase assays were used to evaluate the anti-aging effects in vitro. RESULTS: HPLC-MS analysis furnished 30 compounds, among them catechin, 11α-hydroxy muzigadiolide, mukaadial, pereniporin B, and 11α-hydroxycinnamosmolide. The major components of the extract showed appropriate fitting in the binding site of the target enzymes adopted in the study with considerable minimum free binding energy relative to the standard inhibitors. The extract showed substantial in vitro antioxidant activity in DPPH and FRAP assays and in vitro anti-aging assays against collagenase, elastase, tyrosinase, and hyaluronidase with comparable IC50 values to the reference standards. Moreover, it attenuated oxidative stress in vivo as it significantly increased the survival rate of ROS stressed C. elegans worms, decreased intracellular ROS, decreased the juglone-induced HSP16 expression and enhanced the nuclear localization of DAF16 in a dose-dependent manner. CONCLUSION: Our results support the traditional use of W. salutaris to counteract inflammation and oxidative stress associated with several pathological conditions. In addition, W. salutaris bark extract can be considered as a substantial source for bioactive metabolites with strong potential as anti-aging and antioxidant agents.


Antioxidants , Magnoliopsida , Aging , Animals , Antioxidants/therapeutic use , Caenorhabditis elegans , Magnoliopsida/chemistry , Molecular Docking Simulation , Phytochemicals/pharmacology , Plant Bark/chemistry , Plant Extracts/therapeutic use , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
14.
Microorganisms ; 8(10)2020 Oct 21.
Article En | MEDLINE | ID: mdl-33096635

Marine endophytic fungi from under-explored locations are a promising source for the discovery of new bioactivities. Different endophytic fungi were isolated from plants and marine organisms collected from Wadi El-Natrun saline lakes and the Red Sea near Hurghada, Egypt. The isolated strains were grown on three different media, and their ethyl acetate crude extracts were evaluated for their antimicrobial activity against a panel of pathogenic bacteria and fungi as well as their antioxidant properties. Results showed that most of the 32 fungal isolates initially obtained possessed antimicrobial and antioxidant activities. The most potent antimicrobial extracts were applied to three different cellulose containing fabrics to add new multifunctional properties such as ultraviolet protection and antimicrobial functionality. For textile safety, the toxicity profile of the selected fungal extract was evaluated on human fibroblasts. The 21 strains displaying bioactivity were identified on molecular basis and selected for chemical screening and dereplication, which was carried out by analysis of the MS/MS data using the Global Natural Products Social Molecular Networking (GNPS) platform. The obtained molecular network revealed molecular families of compounds commonly produced by fungal strains, and in combination with manual dereplication, further previously reported metabolites were identified as well as potentially new derivatives.

15.
Molecules ; 25(7)2020 Apr 08.
Article En | MEDLINE | ID: mdl-32276465

In this study, the essential oils (EOs) of six Algerian plants (Artemisia campestris L., Artemisia herba-alba Asso, Juniperus phoenicea L., Juniperus oxycedrus L., Mentha pulegium L. and Lavandula officinalis Chaix) were obtained by hydrodistillation, and their compositions determined by GC-MS and GC-FID. The antioxidant activity of the EOS was evaluated via 2,2'-diphenyl-1-picrylhydrazyl (DPPH), ferric-reducing/antioxidant power (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays. Moreover, their cytotoxic effect was evaluated-as well as their tyrosinase, acetyl- and butyryl-cholinesterase (AChE and BuChE) inhibitory activities. The chemical analyses detected 44, 45, 51, 53, 26 and 40 compounds in EOs of A. campestris, A. herba-alba, J. phoenicea, J. oxycedrus, M. pulegium and L. officinalis, respectively. A. campestris EO was mainly composed of ß-pinene (20.7%), while A. herba-alba EO contained davanone D (49.5%) as the main component. α-Pinene (41.8%) was detected as the major constituent in both J. phoenicea (41.8%) and J. oxycedrus (37.8%) EOs. M. pulegium EO was characterized by pulegone as the most abundant (76.9%) compound, while linalool (35.8%) was detected as a major constituent in L. officinalis EO. The antioxidant power evaluation revealed IC50 values ranging from 2.61 to 91.25 mg/mL for DPPH scavenging activity, while the FRAP values ranged from 0.97-8.17 µmol Trolox equivalents (TX)/g sample. In the ABTS assay, the values ranged from 7.01 to 2.40 µmol TX/g sample. In the presence of 1 mg/mL of the samples, tyrosinase inhibition rates ranged from 11.35% to 39.65%, AChE inhibition rates ranged from 40.57% to 73.60% and BuChE inhibition rates ranged from 6.47% to 72.03%. A significant cytotoxic effect was found for A. herba-alba EO. The obtained results support some of the traditional uses of these species in food preservation and for protection against several diseases.


Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Oils, Volatile/pharmacology , Plants/chemistry , Butyrylcholinesterase/metabolism , Cell Death/drug effects , Cell Line, Tumor , Gas Chromatography-Mass Spectrometry , Humans , Monophenol Monooxygenase/metabolism
16.
Antioxidants (Basel) ; 8(9)2019 Sep 19.
Article En | MEDLINE | ID: mdl-31546777

Cyclophosphamide (CP) is a potent anti-neoplastic and immunosuppressive agent; however, it causes multi-organ toxicity. We elucidated the protective activities of Eucalyptus globulus (EG) leaf extract against CP-induced hepato-renal toxicity. Mice were treated with EG for 15 days plus CP on day 12 and 13 of the experiment. Using HPLC-DAD-ESI-MS/MS, 26 secondary metabolites were identified in EG leaf extract. Out of them, 4 polyphenolic compounds were isolated: (1) 4-(O-ß-d-xylopyranosyloxy)-3,5-di-hydroxy-benzoic acid, (2) 4-(O-α-l-rhamnopyranosyloxy)-3,5-di-hydroxy-benzoic acid, (3) gallic acid, and (4) methyl gallate. Effects of EG extract on biochemical parameters, gene expression, and immune-histopathological changes were assessed in comparison to mesna positive control. Results showed that EG improved CP-increased serum ALT, AST, creatinine, and blood urea nitrogen levels. The hepatic and renal tissue levels of MDA, nitric oxide, protein carbonyl, TNF-α, IL-6, and immunohistochemical expression of nuclear factor kappa-B (NF-kB) and caspase-3 were reduced. Also, hepatic and renal GSH contents, and nuclear factor E2-related factor 2 (NRf2)/ hemoxygenase-1 (HO-1) signaling levels were increased. Histopathological findings supported our findings where hepatic and renal architecture were almost restored. Results revealed the protective effects of EG against CP-induced hepato-renal toxicity. These effects may be related to EG antioxidant, anti-inflammatory, and anti-apoptotic properties coupled with activation of Nrf2/HO-1 signaling.

17.
Curr Pharm Biotechnol ; 20(7): 595-604, 2019.
Article En | MEDLINE | ID: mdl-31203800

BACKGROUND: Diabetes mellitus is the most common disease in Egypt. In this context, Beta vulgaris subspecies cicla L. var. flavescens is an edible plant that has been used in traditional medicine as a therapy for treating some diseases. OBJECTIVES: The current study was performed to evaluate the antibacterial and potential anti-diabetic activities of different extracts and isolated flavone C-glycoside compounds isolated from Beta vulgaris subspecies cicla L. var. flavescens leaves. METHODS: Phytochemical investigation of n-butanol extract led to the isolation of five phytoconstituents. Their structures were determined by spectroscopic tools, including 1D-NMR (1H- & 13C-NMR) and 2D-NMR (HMQC & HMBC) besides the comparison of the data with the literature. The extracts and phytoconstituents were evaluated in vitro for their activity against some bacterial pathogens, which represent prominent human pathogens, particularly in hospital settings. The antibacterial activity was examined against three Gram-positive bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis & Enterococcus faecalis) and five Gram-negative ones (Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Proteus mirabilis & Salmonella typhimurium) relative to Ciprofloxacin as a reference drug. Furthermore, the in vitro antidiabetic activity (Type II) was evaluated using the alpha-glucosidase inhibitory assay. RESULTS: Five flavone C-glycosides namely; Apigenin 8-C-ß-D-glucopyranoside (vitexin) (1), 2''-Oxylopyranosylvitexin (2), acacetin 8-C-ß-D-glucopyranoside (3), acacetin 8-C-α-L-rhamnoside (4), and 6,8-di-C-ß-D-glucopyranosylapigenin (vecinin-II) (5) were isolated from n-butanol extract of B. vulgaris subspecies cicla L. var. flavescens. Compound 1 showed a promising antibacterial activity against most of the test bacterial strains with respect to the minimum inhibitory concentration values (MIC) ranged from 1.95 to 15.63 µg ml-1. On the other hand, compounds 1 and 3 demonstrated superior antidiabetic activities with IC50 values of 35.7 and 42.64 µg ml-1, respectively, while an inferior potential antidiabetic activity was recorded for compound 4 (IC50 = 145.5 µg ml-1) in comparison with Acarbose as a reference drug. CONCLUSION: B. vulgaris L. is an edible plant, which could be used as a natural source of antibiotic and hypoglycemic drugs.


Amaranthaceae/chemistry , Anti-Bacterial Agents/pharmacology , Beta vulgaris/chemistry , Flavones/pharmacology , Glycosides/pharmacology , Hypoglycemic Agents/pharmacology , Amaranthaceae/growth & development , Anti-Bacterial Agents/isolation & purification , Beta vulgaris/growth & development , Egypt , Flavones/isolation & purification , Glycosides/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Hypoglycemic Agents/isolation & purification , Microbial Sensitivity Tests , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Leaves/chemistry
18.
Turk J Pharm Sci ; 16(2): 234-239, 2019 Jun.
Article En | MEDLINE | ID: mdl-32454719

OBJECTIVES: Our study aimed to investigate the chemical profile of hydroalcoholic extract of Algerian Artemisia campestris and its antioxidant activity. MATERIALS AND METHODS: The hydroalcoholic extract of Algerian A. campestris was investigated for its phenolic constituents using high performance liquid chromatography (HPLC)-diode array detection (DAD)-electrospray ionization (ESI)-mass spectrometer (MS)/MS. The in vitro antioxidant activity and total phenolic content were also evaluated via oxygen radical absorbance capacity and Folin-Ciocalteu assays, respectively. RESULTS: HPLC-DAD-ESI-MS/MS analysis revealed that the main tentatively identified compounds were caffeoylquinic acid isomers, flavonoids, and benzoic acid derivatives. Additionally, the hydroalcoholic extract exhibited a promising antioxidant activity value of 120.5±10.4 µmol Trolox equivalent antioxidant capacity/g dry weight (DW), and a strong correlation exists between this activity and the total phenolic content value of 102.09±1.65 mg/g gallic acid equivalents DW. CONCLUSION: The hydroalcoholic extract of A. campestris is a promising candidate for the production of naturally occurring antioxidant agents.

19.
Molecules ; 23(12)2018 Dec 07.
Article En | MEDLINE | ID: mdl-30544575

Reactive oxygen species (ROS) have been linked to several health conditions, among them inflammation. Natural antioxidants may attenuate this damage. Our study aimed to investigate the chemical composition of a methanol leaf extract from Alpinia zerumbet and its possible antioxidant, anti-inflammatory, anti-nociceptive, and antipyretic effects. Altogether, 37 compounds, representing benzoic and cinnamic acid derivatives and flavonoids (aglycones and glycosides), were characterized. The extract showed substantial in vitro antioxidant effects, and inhibited both cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2) in vitro, with a higher selectivity towards COX-2. It also inhibited 5-lipoxygenase (LOX) activity in vitro with nearly double the potency of zileuton, a reference 5-lipoxygenase (LOX) inhibitor. The extract exhibited anti-inflammatory effects against carrageenan-induced rat hind paw edema, and suppressed leukocyte infiltration into the peritoneal cavity in carrageenan-treated mice. Furthermore, it possessed antipyretic effects against fever induced by subcutaneous injection of Brewer's yeast in mice. Additionally, the extract demonstrated both central and peripheral anti-nociceptive effects in mice, as manifested by a decrease in the count of writhing, induced with acetic acid and an increase in the latency time in the hot plate test. These findings suggest that the leaf extract from Alpinia zerumbet could be a candidate for the development of a drug to treat inflammation and ROS related disorders.


Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Antipyretics/pharmacology , Plant Extracts/chemistry , Polyphenols/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Zingiberaceae/chemistry , Analgesics/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antipyretics/chemistry , Capillary Permeability/drug effects , Carrageenan , Cell Movement/drug effects , Chromatography, High Pressure Liquid , Cyclooxygenase Inhibitors/pharmacology , Edema/drug therapy , Edema/pathology , Leukocytes/drug effects , Leukocytes/pathology , Lipoxygenase Inhibitors/pharmacology , Methanol , Mice , Peritoneal Cavity/pathology , Polyphenols/chemistry
20.
Sci Rep ; 8(1): 9343, 2018 06 19.
Article En | MEDLINE | ID: mdl-29921841

The potential hepatoprotective activities of two Lannea species were explored in vivo. Furthermore, the binding activities of their main polyphenols to the antiapoptotic protein Bcl-2 were investigated. Based on HPLC-MS/MS results, 22 secondary metabolites were characterized in L. stuhlmannii (mainly tannins), while 20 secondary metabolites (mainly sulphated tannins) were identified in L. humilis. Both extracts exhibited substantial antioxidant activities in vitro and counteracted D-galactosamine induced intoxication in rats in vivo and increased the total antioxidant capacity (TAC) of liver tissues. In addition to reducing the elevated levels of AST and total bilirubin, both extracts significantly attenuated the deleterious histopathologic changes in liver after D-galactosamine-intoxication. Also, both extracts protected hepatocytes from apoptotic cell death and increased the expression of the anti-apoptotic protein Bcl-2. The identified compounds from both extracts can bind to the Bcl-2: Bim (BH3) interface with an appreciable binding free energy. Hydrogen and ionic bonds and hydrophobic interactions with amino acid residues in the hydrophobic face of Bim (BH3) domain were discovered. To sum up, L. humilis and L. stuhlmanni exhibited promising hepatoprotective activities in vivo against D-GalN-induced liver injury and their hepatoprotection is due to the antioxidant and anti-apoptotic effects of tannins and proanthocyanidins.


Anacardiaceae/chemistry , Liver/drug effects , Liver/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Tannins/chemistry , Animals , Antioxidants/metabolism , Chromatography, High Pressure Liquid , Galactosamine/pharmacology , Hydrogen Bonding , Immunohistochemistry , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Tandem Mass Spectrometry
...